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The FRF (frequency response function) estimation can be performed by the vibration
analysis of a linear time-invariant dynamic system. Since a single FRF estimate is highly
sensitive to measurement errors of input/output signals, the mean averaging of repeatedly
observed FRF estimates is employed in most of the practical applications. The main result of
this work is in reducing the number of averaging operations and enhancing estimation
accuracy by using a robust wavelet de-noising method. This approach removes outliers and
zero-mean Gaussian noise simultaneously and e!ectively while preserving most of the
important signal features of a true FRF with a dramatically smaller number of operations as
compared with the traditional mean-averaging procedure. The robust wavelet de-noising
method is based on a wavelet-related median "ltering and a wavelet shrinkage to reduce the
e!ect of outliers and zero-mean Gaussian noise respectively. The e!ectiveness of the present
FRF estimation technique is demonstrated using both simulated and experimental data.
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1. INTRODUCTION

The FRF estimation of a linear time-invariant dynamic system is common for system
identi"cation, and various methods including traditional Fourier-based "ltering methods
have been proposed to better FRF estimation. In random vibration analysis [1, 2], an FRF
estimate obtained from a single observation of input/output signals exhibits a severe
distortion due to inevitable measurement errors. Thus, a mean-averaging procedure among
noisy FRF estimates may be utilized, and is, in fact, the simplest and the most widely used
method in FRF estimation. In the case of some complicated structures, however, very
intensive averaging is required to obtain an FRF estimate with an acceptable precision.

The noise appearing in an FRF estimate may be classi"ed in two types; one has
a relatively low intensity but contaminates the true signal in most of the time, and the other
has a relatively high intensity but exists only in a short period of time. The "rst type of noise
is well characterized by a Gaussian noise model. In this work we call the second type of
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noise outliers in a sense that it is neither part of a true signal nor small measurement errors
that can be reasonably modelled by a Gaussian noise.

The purpose of this work is in reducing the number of averaging in FRF estimation. To
do so, we can apply "rst a noise-removal algorithm to each FRF estimate and then take the
mean average of noise-removed ones. Most of the noise-removal algorithms, however, do
not simultaneously remove well a Gaussian noise and outliers. For example, the
Fourier-based "ltering does not work well on outlier removal; the energy on an outlier is
spread over a wide frequency range so that usual low-pass "ltering cannot remove outliers
e$ciently. On the other hand, a median "lter is well known to be good at removing outliers.
A considerably long mask is, however, required for the median "lter to suppress a Gaussian
noise e!ectively, which results in an over-smoothed FRF estimate.

Recently, there has been a great interest in the use of wavelet bases in signal/image
processing [3, 4], statistical applications [5, 6], etc. One of the successful wavelet
applications is the recovery of a signal corrupted by a Gaussian noise. For a Gaussian noise
removal, Donoho and Johnstone developed a wavelet shrinkage method [see, e.g., references
[5}7]), which either shrinks all wavelet coe$cients towards zero by a certain amount (soft
thresholding) or sets to zeros the wavelet coe$cients that are less than a certain value (hard
thresholding). This shrinkage method has been proven to give a better performance in
Gaussian noise reduction than classical Fourier-based methods. Unfortunately, the wavelet
shrinkage method is not suitable for the removal of outliers which usually appear in an FRF
estimate. Recently, a wavelet-based de-noising method for the FRF estimation was
suggested by Bodin and Wahlberg [8, 9]. They combined the wavelet shrinkage method
with a preconditioning step operated by a Hanning window for FRF de-noising. Their
approach, however, has no consideration of a noise in an input signal.

In this paper, we employ a robust wavelet de-noising method in order to reduce dramatically
the number of averaging operations and improve the quality of FRF estimates. This method is
based on a robust wavelet decomposition, which is introduced in reference [10]. Unlike the
approach by Bodin and Wahlberg [8, 9], the present FRF estimation method can pin-point
outliers and a Gaussian noise by employing the robust wavelet de-noising scheme consisting of
repeated applications of wavelet-based median "ltering and wavelet shrinkage.

We have implemented this method and present several simulated and experimental
results. These results show that outliers and zero-mean Gaussian noise in an FRF can be
simultaneously and e!ectively removed while most of the important signal features of a true
FRF are preserved. Furthermore, the number of averaging operations is dramatically
smaller as compared with the traditional procedure where only the straightforward
mean-averaging technique is employed.

This paper is organized as follows. Section 2 brie#y reviews the basic wavelet theory and
a wavelet de-noising method for a Gaussian noise. Section 3 explains the common
procedure of the FRF estimation and the di$culty in dealing with the noise in an FRF
estimate. Section 4 presents new robust wavelet decompositions, which are resistant to
outliers, and a corresponding de-noising method for the FRF estimation. Section 5
investigates the performance of the proposed method for numerical and experimental data.
Finally, section 6 concludes this work.

2. WAVELETS AND GAUSSIAN NOISE REMOVAL

In this section, we brie#y review the basic wavelet theory and the wavelet-related
de-noising method suggested by Donoho and Johnstone. More details can be found in
references [6, 11].
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The term (orthogonal) &&wavelet'' itself refers to a real-valued function t, de"ned on the
whole real line R, with the combination of integer shift and dyadic dilation, that is,
t
k,j
"2k@2t(2k )!j), k, j3Z, yields an orthonormal basis of the set of all energy bounded

(real-valued) signals, ¸2 (R). Thus, any signal f3¸2 (R) can be represented as a series
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We call the "rst and second equations in equation (3) the low-pass fast wavelet transform
(FWT) and high-pass FWT respectively.

When one is concerned with a discrete signal ( f
n
), n"0, 1,2 , 2m!1, (in this work, for

the simplicity of the presentation, we shall consider only a discrete signal whose length is 2m
for some positive integer m), a common practice in wavelet-based signal processing assumes
that there exists a signal f such that f

n
"2m@2S f, /

m,n
T, i.e., f

n
"2m@2C

m
[n]. For instance, if

/ is the characteristic function of [0, 1], i.e., / (x)"1 for x3[0, 1], and / (x)"0 for xN[0,
1], the sample value f

n
is the average value of the continuous signal f over the interval

[n2~m,(n#1)2~m]. With this observation model, we can compute C
kÒ

, D
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, D
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,2, D
m~1

from ( f
n
) by using equation (3) successively. We call this procedure fast wavelet transform

(FWT). Inverse fast wavelet transform (IFWT) is the procedure of obtaining ( f
n
) from C

kÒ
,

D
kÒ
, D

kÒ`1
,2, D

m~1
by using equation (4) successively.

One of the major advantages of FWT is the so-called &&energy concentration property'',
which means that most of the energy in the signal is concentrated on a few wavelet
coe$cients. On the other hand, the Gaussian noise is spread to all wavelet coe$cients with
the same variance. Using this property, Donoho and Johnstone [6] suggested
a wavelet-related de-noising method. Suppose a noisy data >"f#Z, where f is a true
signal contaminated by a Gaussian noise Z&N (0, p2). The de-noising method suggested
by Donoho and Johnstone employs three steps:

f Apply FWT to a set of noisy data > to get its wavelet coe$cients.
f Use soft or hard thresholding to the wavelet coe$cients in order to reduce a Gaussian

noise.
f Apply IFWT to the resulting coe$cients from the previous step.
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The de"nitions of soft threshold Sk (x) and hard thresholding Hk(x) are

Sk(x)"G
x!k, x'k,

0, Dx D)k,
x#k, x(!k,

and

Hk (x)"G
x,

0,

Dx D'k,

Dx D)k.

This method provides asymptotically near-optimal results for Gaussian noise removal if
a well-chosen thresholding value k is employed, and gives better Gaussian noise reduction
than classical Fourier-based methods. A near-optimal threshold value k can be obtained by
several ways [3, 5, 6]. We state a method for future use:

k
m~1

"J2 log 2mp, k
k
"k

k`1
/2, (5)

where p denotes the standard deviation of a Gaussian noise.

3. FRF ESTIMATION

In this section, we shall brie#y review the common procedure of FRF estimation from
noisy data and some di$culties in doing so.

The linear time-invariant dynamic system can be formulated as

y (t)"h * u(t)#v(t), v (t)&N(0,p2
v
), (6)

where h * u(t)":t
~=

h(t!q)u(q) dq. In this model we assume that u (t) is a true input signal
and y(t) is a measured output signal corrupted by a Gaussian noise v (t). We also assume
that the measurement error in the true input signal u(t) follows a zero-mean Gaussian noise
model. Thus, the measured input signal x (t) is modelled by

x(t)"u (t)#n(t), n (t)&N (0,p2
n
), (7)

The FRF H(u) of the system is de"ned by

H (u)"P
=

~=

h (t)e!iut dt. (8)

The goal is to obtain an accurate estimate estimate of the true FRF H (u) from x(t) and y (t).
In a stationary random process, the linear relation of input and output is commonly

given by cross- and auto-spectral density functions S
xy

(u) and S
xx

(u) [for de"nitions, see,
e.g., references [1, 2]] respectively. Using a window function to reduce a leakage error, an
estimated FRF HI (u) can be given by

HI (u)"
= (u) *S

xy
(u)

=(u) * S
xx

(u)
(9)

with a complex-valued window function =(u). Thus, an estimated FRF HI (u) can be
expressed as

HI (u)"H(u)#Z(u), (10)

where H (u) is the true FRF and Z(u) is a complex-valued noise generated by measurement
errors in input/output signals and the use of the window function. Hence Z(u) depends on



Figure 1. True and noisy FRF (real part). (a) Real (H (u)); (b) real (HI (u)).
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h, u, n, v and=. This implies that Z (u) no longer follows a Gaussian noise model even if
input and output signals are contaminated with pure Gaussian noise models.

Figure 1(a) shows the real part of the true FRF of a two-degrees-of-freedom (2-d.o.f.)
linear system. To demonstrate an e!ect of measurement errors in input/output signals,
a Gaussian noise n (t)&N (0, 5002) is added to a true input signal u (t) and another
Gaussian noise v(t)&N (0, 0)0022) to a true output signal h * u(t). Figure 1(b) shows the real
part of the estimated FRF from a single set of input/output signals, with the Hanning
window function in equation (9). As we can see from Figure 1(b), the FRF estimate from
a single measurement su!ers from a severe noise.

By comparing Figures 1(a) and (b), one can immediately see that the noise Z (u) in
equation (10) is very far from a Gaussian noise. In this paper, we assume the following noise
model:

Z (u)"G(u)#O(u), (11)
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where G(u) is a Gaussian noise and O(u) is a set of outliers, which are neither part of a true
signal nor small measurement errors that can be reasonably modelled by a Gaussian noise.

Let

HK *M+(u)"
1

M

M
+
i/1

HM
i
(u), (12)

where HI
i
is the estimated FRF from the ith input/output signals by equation (9). If we

increase M, the number of measurements, then the estimated FRF HK *M+ in equation (12)
would eventually converge to the true FRF H. The main di$culty of the FRF estimation by
equation (12), however, is slow convergence. That is, to get a satisfactory FRF estimate in
equation (12), one needs to endure with a time-consuming measurement procedure.

The slow rate of convergence in HK *M+ to H is largely due to a Gaussian noise and
wide-spread outliers in HI

i
. To reduce the number of operations in equation (12) one can

apply a noise removal algorithm to HI
i
to get a noise-reduced estimate HI d

i
and take the

mean among HI d

i
instead of HI

i
in equation (12). Most of the noise-removal algorithms,

however, do not simultaneously remove well a Gaussian noise and outliers. For example,
the standard wavelet de-noising method does not work well on outlier removal. Notice that
an outlier exists in a very short period of time and has relatively higher energy. Thus, most
of the energy on an outlier is concentrated on a few wavelet coe$cients D

k
( j) that are too

large to be removed by the standard wavelet de-noising method without a degradation of
signal. The Fourier-based "ltering makes the situation worse; the energy in an outlier is
spread over a wide frequency range, and thus it is not easily removed by the usual low-pass
"ltering. Moreover, the Fourier-based "ltering hardly distinguishes the outlier from
a high-pitched signal. On the other hand, the median "lter is known to be good at removing
outliers. But, a considerably long mask is required for the median "lter to suppress the
Gaussian noise e!ectively, which results in an over-smoothed FRF estimate. To overcome
the described weakness in the standard wavelet de-noising method, the Fourier-based
"ltering and the median "ltering, we suggest the use of a robust wavelet de-noising method.
This is the topic of the next section.

4. ROBUST WAVELET DE-NOISING

In this section, we shall explain a robust wavelet decomposition proposed by Bruce et al.
[10] with some changes in notations and terminology. We shall also present how to apply
this robust wavelet decomposition to the FRF estimation.

We begin with the outlier-resistant wavelet decomposition proposed by Bruce et al. [10].
Let Cd

m
"C

m
, where C

m
is the sequence of the "nest wavelet coe$cients. Starting from

coe$cients Cd

m
, for each level k (k)m) the sequence of coe$cients Cd

k
is decomposed into

three components:

f Outlier coe$cients O
k

given by O
k
[ j]"Se (C

d

k
[ j]!CI d

k
[ j]), where Se(x) is the soft

thresholding and CI d
k

is a median-"ltered sequence of Cd

k
.

f New smooth wavelet coe$cients Cd

k~1
obtained by applying the low-pass FWT to the

outlier-free coe$cients Cd

k
!O

k
.

f New detail wavelet coe$cients Dd

k~1
obtained by applying the high-pass FWT to the

outlier-free coe$cients Cd

k
!O

k
.

The length of the median "lter is determined to avoid outliers leaking into coarse levels.
In practice, using a median "lter of length 5 or 7 is usually su$cient. Also, the depth, at



Figure 2. Robust wavelet decomposition.

Figure 3. 2-d.o.f. simulation model.
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which median "lters are operated, is determined selectively to localize the smoothing e!ect
of median "lters.

Figure 2 depicts the systematic procedure of robust wavelet decomposition, where &&MP''
indicates the procedure O

k
[j]"Se (C

d

k
[ j]!CI d

k
[ j]). In our applications, the median

"ltering was used for the "rst two levels and the standard wavelet decomposition and the
corresponding shrinkage method was used for the remaining levels. This method behaves
like the standard wavelet shrinkage for removal of a Gaussian noise, but in contrast with the
standard wavelet shrinkage, it reduces outliers by an additional median "ltering e!ectively.
Finally, a noise-removed signal is reconstructed by applying IFWT on the resulting
coe$cients.

The proposed method requires shrinkage steps in O
k
[ j]"Se (C

d

k
[ j]!CI d

k
[ j]) to pin-

point outliers and in Sk
k
(D*

k
[j]) to remove a Gaussian noise, where D*

k
is either Dd

k
by the

robust wavelet decomposition or D
k
by the standard wavelet decomposition. We suggest the

use of the threshold value k
k
in equation (5), i.e., k

m~1
"J2 log 2mp and k

k
"k

k`1
/2, where

p is the standard deviation of the Gaussian noise G. The standard deviation p of
the Gaussian noise G can be accurately estimated by many statistical methods [12]
as long as outliers are not too heavily spread. Recall that the parameter e in



TABLE 1

System parameters

Mode Frequency (Hz) Damping ratio (%)

1 10)0 19)1
2 25)0 7)5

Figure 4. True FRF. (a) Magnitude; (b) phase.
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O
k
[ j]"Se (C

d

k
[ j]!CI d

k
[ j]) is designed to distinguish outliers from a Gaussian noise. We

suggest use of e"1)96p that is su$ciently large to have 95% con"dence and su$ciently
small to locate most of the outliers.



Figure 5. The estimation of the FRF magnitude by the simple mean-averaging (left) and the proposed method
(right): (a) single FRF; (b) no. of averages"20; (c) no. of averages"50: . . . . . , true FRF; **, estimate.

FREQUENCY RESPONSE FUNCTION 643
5. APPLICATIONS

We apply the robust wavelet de-noising method to the real and imaginary parts of each
FRF estimate HI

i
separately, and then take the average HK *M+ among the resulting
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M-noise-removed FRF's, i.e.,

HK *M+ (u)"
1

M

M
+
i/1

HI d

i
(u), (13)

where HI d

i
is obtained from the estimated FRF HI

i
[see equation (12)] through the robust

wavelet de-noising method.
The method presented in the previous section was applied for the FRF estimation of

a 2-d.o.f. linear system (M
1
"2, M

2
"0.2, C

1
"40, C

2
"5, K

1
"48567, K

2
"805) shown

in Figure 3. Table 1 gives the system parameters and Figure 4 shows the true FRF.
We generated a random sequence (u

j
)
j/0,1 ,2 , 2047 as discrete samples of the true input

signal u (t). To simulate a measurement error, we added an independent and identically
distributed Gaussian noise with standard deviations p

n
"500 (SNR

n
"21.25) and

p
v
"0.002 (SNR

v
"36.09) to the input signal and the output signal respectively. Here SNR

denotes signal-to-noise ratio de"ned by

SNR"10 log
10

+N~1
k/0

D f
k
D2

Np2
,

where ( f
k
) is a certain original signal, p is the standard deviation of the added noise and

N is the signal length. Again, we used the Hanning function as the window function in
equation (9).

To localize a smoothing e!ect by the median "lter, we chose a median "lter of length
7 and applied the median "ltering to the "rst two levels. We used the biorthogonal wavelet
t
6,8

[11] for this simulation. The threshold values were chosen as described in the previous
section, and the wavelet shrinkage was performed up to level 5. We also employed the
translation invariant wavelet shrinkage techniques to reduce some artifacts. For details, see
reference [13].

Figures 5 and 6 show the performance of the simple mean-averaging and the proposed
method in FRF estimation respectively. The performance comparison can be measured by
the relative root mean square error (RMSE) ratio,

RMSE ratio"
EHK *M+(u)!H (u)E

EH (u)E
, (14)

where HK *M+ is the estimated FRF by either the mean averaging only or the proposed
method. As shown in Figure 7, the proposed method produces smaller estimation
errors and has better noise reduction as compared with the simple mean-averaging
method.

The proposed method was applied to the FRF estimation of an experimental model
shown in Figure 8. Although no exact FRF is known, this example shows that the proposed
method is practically useful. Figures 9 and 10 compare the estimated FRF's by simple
mean-averaging with those by the proposed method. The advantage of the proposed
method over the simple mean-averaging method is clearly shown in these "gures.

6. CONCLUSIONS

In this paper, a new FRF estimation technique via a robust wavelet de-noising method
combined with the mean averaging was introduced. The robust wavelet denoising method is



Figure 6. The estimation of the FRF phase by the simple mean-averaging (left) and the proposed method (right):
(a) single FRF; (b) no. of averages"20; (c) no. of averages"50: . . . . . , true FRF; **, estimate.
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adapted as an alternative tool to overcome the limitation of the standard wavelet shrinkage,
Fourier-based "ltering and median "ltering in removing the Gaussian noise and outliers
simultaneously. This method uses a wavelet-related median "ltering to suppress outliers



Figure 7. Comparison of the relative RMSE ratio: ****, with mean averaging;*K**, with proposed method.

Figure 8. Photo of the experimental model.
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while dramatically reducing a Gaussian noise with the wavelet shrinkage. The order of the
computational complexity of the proposed method with the translation invariant wavelet
shrinkage technique is O (N logN ), which is equal to that of the Fourier-based method.



Figure 9. The estimation of the FRF magnitude by the simple mean-averaging (left) and the proposed method
(right): (a) single FRF; (b) no. of averages"20; (c) no. of averages"40.
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Here N is the number of data. It was shown that as compared with a traditional
mean-averaging process, the proposed method in this work enables to shorten the existing
mean-averaging process and simultaneously gives a better estimate of FRF in terms of error
norm.



Figure 10. The estimation of the FRF phase by the simple mean-averaging (left) and the proposed method
(right): (a) single FRF; (b) no. of averages"20; (c) no. of averages"40.
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